

THE UNIVERSITY OF THE WEST INDIES

ST AUGUSTINE, TRINIDAD AND TOBAGO, WEST INDIES **TECHNOLOGY TRANSFER CENTRE** ENGINEERING INSTITUTE, FACULTY OF ENGINEERING

Telephone (868) 662-2002 Ext. 2504, 2597 Fax: (868) 645-7691 E-mail: civileng@uwi.tt

17-10-11

Mr. Danny Gokool Managing Director Danny's Enterprises Ltd. Claxton Bay Trinidad and Tobago, W.I.

Dear Mr. Gokool,

PANAMA COLD ASPHALT MIX ANALYSIS: REPORT SAMPLE: OCTOBER 2011 PRODUCTION

Please find attached (Attachment #1) the results of the Cold Asphalt Mix analysis requested by your company on one bulk sample of cold asphalt mix produced at your Claxton Bay Plant and delivered to our laboratory on the same day on the 04-10-2011.

The evaluation of the mix was done in accordance with ASTM standard methods of test, and the specification ASTM D4215 Cold Mix Cold Laid Paving Mixtures was used as a guide. The properties analysed are summarised in Table 1 below with specification values shown in brackets.

Property	Result						
Gradation (ASTM C136/D422)	Conforms to ASTM D3515, 12.5 mm						
	nominal mix, and to TTCB HMA2						
	Schedule 20, Govt. Of Trinidad and						
	Tobago (See Attachment #1)						
Coated Particles (ASTM D24890), %	100 (100)						
Asphalt Content (ASTM D2172), %	6.3						
Maximum Theoretical Specific Gravity	2.469						
(ASTM D2041)							
Marshall Properties	s (ASTM D1559)						
Air Void Content (ASTM D3203), %	3.1 (3 to 5)						
Percent Compaction, %	96.9 (95 % Min)						
Stability, kg	8,640 (8000 min)						
Flow, mm	2.62 (2 to 4)						

Table 1: Summary of Cold Asphalt Mix Test Results

Please contact us for any clarification you may require. Sincerely,

Raymond Charles

Raymond Charles, F.I.C.E., R.Eng.

1

ATTACHMENT# 1

Project :	<u>Panam</u>	a Export Cold Mix	<u>x Analysis</u>
Client :	<u>Super P</u>	ave Ltd, Claxton Bo	iy, Trinidad and Tobago, W.I.
Source:	<u>Produc</u>	tion Plant, Octobe	<u>er 2011</u>
Tested By :	<u>E0</u>	Checked By :	<u>RC</u>

Date: <u>12/10/2011</u>

Remarks : HMA 2 Cold Asphalt Mix Surfacing Blend

GRADATION ANALYSIS (ASTM C136/D422)

Percent (by weight) Passing Through Sieve (%)

Item	Sieve Size mm	1"	3/4"	1/2"	3/8"	No. 4	No. 8	No. 30	No. 50	No. 100	No. 200
		25.40	19.05	12.50	9.53	4.75	2.38	0.59	0.30	0.150	0.074
Specs. Upper Limit		100.0	100.0	100.0	90.0	70.0	50.0	29.0	23.0	16.0	10.0
Specs. Lower Limit		100.0	100.0	80.0	70.0	50.0	35.0	18.0	13.0	8.0	4.0
SAMPLE		100.0	100.0	98.3	88. 7	65.7	47.2	26.8	18.1	10.2	6.1
Specs Mid Band		100.0	100.0	90.0	80.0	60.0	42.5	23.5	18.0	12.0	7.0
Maximum Density		100.0	100.0	100.0	87.3	61.6	43.6	21.7	15.4	10.9	7.7

Project : Panama Export Cold Mix Analysis

Client : Super Pave Ltd, Claxton Bay, Trinidad and Tobago, W.I.

Source: *Production Plant, October 2011*

Tested By : \underline{EO} Checked By : \underline{RC}

Date: <u>12/10/2011</u>

Remarks : HMA 2 Cold Asphalt Mix Surfacing Blend

BITUMEN EXTRACTION (ASTM D2172)								
SPECIMEN			No.1	No.1 No.2				
WEIGHT OF MIX (gms)			1500.0	1500.0	1500.0			
WEIGHT OF AGGREGATE (gms)		1405.8	1406.2	1406.1				
WEIGHT OF BITUMEN (gms)			94.2	93.8	94.0			
% BITUMEN BY WEIGHT OF MIX:			6.28	6.25	6.3			

Note: Sample prepared according to Note.5, ASTM D4215

MAXIMUM THEORETICAL SPECIFIC GRAVITY						
(MTSG - ASTM D2041)						
WT. BOTTL	E + WATER +	SAMPLE (gm	s)	2131.1		
TEMPERAT	TEMPERATURE OF SUSPENSION (T, in deg.C)					
WT. BOTTLE + WATER AT Temp. T 1833.6						
DRY WT. MIX (gms)			500.000			
MTSG 2.469						

Note: Tested on Marshall sample 19-02-10

PERCENTAGE OF COATED PARTICLES						
(ASTM D2489)						
Sample 1, %: 100						
Sample 2, %:	100					

Project : Panama Export Cold Mix Analysis

Client : Super Pave Ltd, Claxton Bay, Trinidad and Tobago, W.I.

Source: <u>Production Plant, October 2011</u>

Tested By : <u>EO</u> Checked By : <u>RC</u>

Date: <u>12/10/2011</u>

Remarks : HMA 2 Cold Asphalt Mix Surfacing Blend

7	Dry Specific Gravity of Co	gr/cc	2 651	2 651	2 651			
, 	Apparent Specific Gravity of C	Coarse Aggreg	ate	gr/cc	2.031	2.031	2.031	2 685
0	Specific Gravity of Sand	course riggieg		gr/cc.	2.719	2.719	2.719	2.005
10	Apparent Specific Gravity	of Sand		gr/cc.	2.021	2.021	2.021	2 633
11	Apparent Specific Gravity	of Fillor		gr/cc.	2.043	2.045	2.045	2.035
12	Hoight of Sample			gi/cc.				
12	Weight of Sample in Air				1100.70	1105 20	1105 60	
13	SCD Weight of Semale			gı.	1190.70	1195.20	1195.00	
14	SSD weight of Sample			gr.	1191.00	1195.00	1196.00	
15	Weight of Sample in Water			gr.	693.60	695.70	696.40	
16	Volume of Sample			c.c	497.40	499.90	499.60	
17	Sample Specific Gravity			gr/cc.	2.394	2.391	2.393	2.393
18	Maximum Theoretical Spec	cific Gravity	(MTSG)	gr/cc.	2.469	2.469	2.469	2.469
19	Maximum Theoretical Den	sity		gr/cc.	2.274	2.274	2.274	
20	Percent Air Voids			%	3.044	3.164	3.074	3.094
21	Specific Gravity of Total A	ggregate		gr/cc.	2.631	2.631	2.631	****
22	Apparent Specific Gravity	gr/cc.	2.670	2.670	2.670			
23	Effective Specific Gravity	gr/cc.	2.650	2.650	2.650			
24	Percent Absorbed Asphalt I	%	0.28	0.28	0.28			
25	Total Volume of Aggregate	%	90.98	90.87	90.95			
26	Effective Asphalt Binder C	ontent (volun	ne)	%	5.97	5.97	5.97	*****
27	% Voids in the Mineral Agg	gregate (VMA	A)	%	9.02	9.13	9.05	9.06
28	Effective Asphalt Binder C	ontent (weigł	nt)	%	6.02	6.02	6.02	
29	Voids Filled With Asphalt (VFA)		%	66.25	65.35	66.02	65.87
30	Stability	kg.	8457	8851	8612			
31	Correction Factor		1.00	1.00	1.00			
32	Corrected Stability			kg.	8457	8851	8612	8640
33	Flowmeter Reading			pulg.	10.00	10.00	11.00	10.33
34	Flow			mm.	2.54	2.54	2.79	2.62
35	Stability/Flow Ratio			kg/cm.	33295	34846	30823	32988.3
36.000	Compaction (%MTSG)			%	96.96	96.84	96.93	96.9

MARSHALL VOIDS AND STABILITY (ASTM D1559)

Note: 1. Sample prepared in accordance with paragraph 4.4.2, ASTM D1559